The table below is depicts a summary that examined eight (8) of South Carolina demographics across the state's 46 counties and their relationship to the number of COVID-19 cases and deaths.

Input	Analysis*	COVID-19 Cases/100k		COVID-19 Deaths/100k	
Parameter Examined	Smaller to Larger Entity per County	Statistical Results	Conclusion	Statistical Results	Conclusion
Population Size	Size of county population	F(1, 44) = 3.04 p = 0.088 No slope	No change	F(1,44) = 8.24 p = 0.006 Negative slope	Fewer deaths
Population Density	Density of county population	F(1, 44) = 4.46 p = 0.040 Negative slope	Fewer cases	F(1, 44) = 9.54 p = 0.003 Negative slope	Fewer deaths
Median Household Annual Income	Median household income	F(1, 44) = 19.21 p < 0.001 Negative slope	Fewer cases	F(1, 44) = 19.84 p < 0.001 Negative slope	Fewer deaths
Family Poverty**	Percentage of county family poverty	F(1, 44) = 19.08 p < 0.001 Positive slope	More cases	F(1, 44) = 14.50 p < 0.001 Positive slope	More deaths
Caucasian or White Population	Percentage of county population	F(1, 44) = 49.68 p < 0.001 Negative slope	Fewer cases	F(1, 44) = 19.54 p < 0.001 Negative slope	Fewer deaths
African American or Black Population**	Percentage of county population	F(1, 44) = 59.93 p < 0.001 Positive slope	More cases	F(1, 44) = 30.15 p < 0.001 Positive slope	More deaths
Hispanic / Latino	Percentage of county population	F(1, 44) = 2.41 p = 0.1275 No slope	No change	F(1, 44) = 3.36 p = 0.073 No slope	No change
White, Black, and Hispanic / Latino (combined)	Percentage of county population	F(3, 42) = 21.21 p < 0.001 White, $p = 0.260$ Black, $p = 0.011$ Hispanic, $p = 0.108$	More cases: Blacks had the greatest impact on more cases.	F(3, 42) = 10.84 p < 0.001 White, p = 0.209 Black, p = 0.028 Hispanic, p = 0.306	More deaths: Blacks had the greatest impact on more deaths.

Table 1. Summary of the cumulative effect of COVID-19 by demographics.

Source: South Carolina Department of Health and Environmental Control

^{**}Further analysis most likely will show a strong relationship between these two demographics and COVID-19.

© 2020 WCS, LLC

^{*}The regression analysis model was used on these data. See page 2 for a short tutorial on the regression analysis model.

Short Summary of Demographics versus COVID-19 Cases and Deaths

10/18/20

A short tutorial on the regression analysis model

In the process of examining the trend in COVID-19-positive cases and deaths, I determined the best statistical model fitting a long-term examination of the cumulative data was the regression analysis model. Regression analysis is a set of statistical processes used to estimate the relationships between a dependent variable (often called the outcome variable) and one or more independent variable (often called predictors, covariates, or features). In this summary, the number of positive COVID-19 cases/100k and COVID-19 deaths/100k were used as the dependent variables. The independent variables such as population density, median income, race/ethnicity, and so on served as the input or independent variables. Choosing the regression model for analysis accomplishes several things: (1) it explains a phenomenon, (2) it predicts factors about the future, or (3) it enables decision-making. To that end, the use of the regression model in this summary should be interpreted only as a way of examining the current phenomenon relative to the virus. I used regression analysis to analyze the cumulative COVID-19 positive test cases and deaths for the entire 46 counties in South Carolina.

A negative coefficient (slope) suggests that as the independent variable increases, the dependent variable tends to decrease. A p > 0.05 is the probability that the null hypothesis is true. A statistically significant test result ($p \le 0.05$) means that the test hypothesis is false or not true. The null hypothesis assumes that there is no relationship between the independent variables and dependent variables (No slope or slope = 0). The R-squared value (regression analysis model) is not discussed here; furthermore, any additional discussion about the regression model is beyond the scope of this tutorial.

Thank you. Dave Wilson

© 2020 WCS. LLC

